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Abstract

Introduction: An effective prophylactic vaccine against HIV will need to elicit antibody responses capable of recognizing and

neutralizing rapidly evolving antigenic regions. The immunologic milieu associated with development of neutralizing antibody

breadth remains to be fully defined. In this study, we sought to identify immunological signatures associated with neutralization

breadth in HIV controllers. We applied an immune monitoring approach to analyze markers of T cell and myeloid cell activation

by flow cytometry, comparing broad neutralizers with low- and non-neutralizers using multivariate and univariate analyses.

Methods: Antibody neutralization breadth was determined, and cryopreserved peripheral blood mononuclear cells were stained

for T cell and myeloid cell activation markers. Subjects were grouped according to neutralization breadth, and T cell and myeloid

cell activation was analyzed by partial least squares discriminant analysis to determine immune signatures associated with high

neutralization breadth.

Results: We show that neutralization breadth in HIV viraemic controllers (VC) was strongly associated with increased frequencies

of CD8�CD57� T cells and that this association was independent of viral load, CD4 count and time since HIV diagnosis.

Conclusions: Our data show elevated frequencies of CD8�CD57� T cells in VC who develop neutralization breadth against HIV.

This immune signature could serve as a potential biomarker of neutralization breadth and should be further investigated in other

HIV-positive cohorts and in HIV vaccine trials.
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Introduction
Protective immunity elicited by currently licensed vaccines

relies on the generation of neutralizing antibodies against

conserved antigenic regions of the specific pathogens targeted

by the vaccine [1]. In the case of HIV, an effective vaccinewould

need to induce antibody responses capable of recognizing

and neutralizing rapidly evolving antigenic regions [2], and

thus far, such antibodies have not been elicited in sufficient

levels in humanHIV vaccine trials [3�5]. AlthoughHIV infection
leads to the generation of HIV-specific antibodies, in particular

against components of the HIV envelope (Env), these anti-

bodies are largely non-neutralizing, appear to have little effect

on viral load (VL), and any strain-specific neutralizing effects

that do develop are likely to contribute to viral evolution and

escape (reviewed in [1,6]). This continuous arms race between

the immune system and HIV can, in some individuals, lead

to the development of antibodies that are able to neutralize

a broad range of different viral strains [6�9]. Isolation and

characterization of such broadly neutralizing antibodies

(bNAbs) revealed that these antibodies are highly somatically

mutated [10] and carry insertions, deletions or long comple-

mentary determining regions [10�12] that make it difficult to

elicit such antibodies via conventional immunization strategies

[13]. While development of such bNAbs in the setting of

chronic infection does not necessarily confer clinical benefit to

the individual in whom they are induced, a vaccine that elicits

this type of breadth should have substantial protective efficacy

for uninfected persons.

Since the initial identification and isolation of HIV Env-

reactive neutralizing antibodies [10,14,15], a large number

of potent bNAbs have been cloned [6�9,16]. In fact, several

recent studies have shown therapeutic efficacy of infused

bNAbs in humanized mice [17,18], non-human primates

[19,20] and humans [21]. While such therapeutic approaches
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hold great promise for efforts towards a cure and have

prompted proposals for new therapeutic approaches using

vectored immunoprophylaxis (VIP) [22], a substantial effort

has been directed towards designing effective vaccination

approaches to elicit bNAbs able to protect against HIV

infection.

Vaccination strategies targeted towards eliciting bNAbs

include delivery of such antibodies via VIP [13,23], sequential

immunization to mimic the antigenic evolution needed to

drive generation of bNAbs [1,6] and ‘‘mosaic’’ immunogen

design based on the structure of bNAbs and their ligands [24].

The anticipated success of such vaccination approaches in

inducing HIV-specific bNAbs is supported by the fact that

there is no evidence for genetic predisposition to produce

bNAbs [25] and that production of bNAbs seems to be linked

to the initial Env sequence encountered by the immune

system during early infection [26�28]. Successful evaluation
of neutralization breadth of vaccine-elicited antibodies in vitro

will require standardized assessment of these antibodies

against a global panel of HIV Env reference strains [29].

Identification of surrogate immunologic markers associated

with development of neutralization breadth would facilitate

screening of candidate immunogens and may also provide

insights into the immunologicmilieu required for development

of these responses.

In this study, we examined a cohort of HIV viraemic

controllers (VC) in whom routine immunologic screening had

been performed and neutralization breadth against a standard

reference panel of 11 clade B Tier 2/3 Env pseudoviruses

had been determined, with the goal of identifying immune

signatures associated with the detection of neutralization

breadth.We analyzed data on Tcell and myeloid cell activation

by standardized flow cytometry panels and compared broad

neutralizers with low- and non-neutralizers using multivariate

and univariate analyses. We demonstrate that neutralization

breadth in VC was strongly associated with increased frequen-

cies of CD8�CD57� T cells independent of VL, CD4 count

or duration of infection. This immune signature suggests an

association between CD8 T cell function and development of

neutralization breadth and identifies a potential biomarker for

immune responses associated with increased neutralization

breadth.

Methods
Ethics, subject characteristics and clinical diagnostics

This research is in compliance with the Helsinki Declaration.

Subjects gave written, informed consent prior to enrolment

through institutional review board-approved protocols at

Massachusetts General Hospital (MGH). HIV-positive patients

with undetectable plasma viral load and 52000 copies/ml

in the absence of combination antiretroviral therapy (cART)

were identified as elite controllers (EC) and viraemic con-

trollers (VC), respectively [30]. HIV testing was performed

by the Department of Microbiology at MGH using an Abbott

Architect and a fourth-generation HIV Ab/Ag combo kit

(Abbott Laboratories, Abbott Park, IL, USA). HIV quantitative

VLs were performed on a COBAS† AmpliPrep Instrument and

COBAS† TaqMan† 48 Analyzer (Roche Molecular Diagnostics,

Pleasanton, CA, USA). CD4 counts were assessed at the Clinical

Flow Cytometry Laboratory at MGH using a MultitestTM kit

and BD FACSCantoTM flow cytometer (BD Biosciences, San Jose,

CA, USA). Subject demographics including frequencies of

protective HLA-B alleles are shown in Table 1.

Reagents and samples

Peripheral blood samples were drawn into acid citrate

dextrose vacutainer tubes or standard therapeutic phlebot-

omy whole blood collection bags for large blood donations.

Peripheral blood mononuclear cells (PBMCs) were isolated by

density gradient centrifugation as previously described [31]

and cryopreserved in 10% dimethyl sulfoxide and 90% heat-

inactivated foetal bovine serum (FBS). Samples were pro-

cessed, and plasma and PBMCs cryopreserved within six

hours of phlebotomy to ensure high sample quality and to

avoid alteration in cellular functions that might impair the

integrity of our results [32]. Cryopreserved samples were

thawed and washed twice with RPMI 1640 Medium supple-

mented with 10% FBS (both Sigma-Aldrich) prior to analysis

by flow cytometry.

Flow cytometry

PBMCs were stained with antibody panels testing for T cell

activation [33] and monocyte/DC characteristics [34] as

previously described. Details of antibodies and stains used

in each panel are listed in Supplementary File 1. Cells were

fixed with Fix/Perm Medium (Invitrogen) and washed prior to

acquisition on an LSRII flow cytometer using FACSDivaTM

software (BD). Cytometer settings were kept consistent by

tracking laser voltages using UltraRainbow Fluorescent Parti-

cles (Spherotech, Inc., Lake Forest, IL, USA). Compensation

settings were assessed using CompBeadTM particles (BD) and

compensation calculated and applied in FACSDivaTM software.

Samples were analyzed using FlowJo (Tree Star, Inc., Ashland,

OR, USA).

Determination of neutralizing antibody breadth

Patient plasma samples were heat-inactivated (568C for 1

hour) and tested for neutralizing activity using a luciferase-

based assay in TZM.bl cells as previously described [35].

Briefly, three-fold dilutions of plasma samples starting at a

1:20 dilution were performed in duplicate. Env-pseudotyped

viruses were added to the plasma dilutions at a pre-

determined titre to produce measurable infection and incu-

bated for one hour at 378C. TZM.bl cells were then added at

1�104/well and plates incubated for 48 hours. Cells were

lysed for two minutes with Bright-Glo luciferase reagent

(Promega, Madison, WI, USA), and supernatant measured

for luciferase activity using a Victor 3 luminometer (Perkin

Elmer,Waltham, MA, USA). The 50% inhibitory dose (ID50) was

calculated as the plasma dilution that resulted in a 50%

reduction in relative luminescence units compared with virus

control wells. All plasma samples were assayed against a

standard reference panel of 11 clade B Tier 2/3 Env pseudo-

viruses [36]. Plasma neutralizing activity against each HIV Env

pseudovirus was scored as positive, when ID50 titres were at

least three-fold above Murine Leukaemia Virus negative

control as previously described [37], and is summarized in

Supplementary file 2.
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Stratification of patients according to their neutralization

breadth

HIV controllers (EC: n�21; VC: n�41; total n�65) were

classified according to anti-HIV antibody breadth. Subjects

with 0 breadth were classified as non-neutralizers (n�33).

Neutralization breadth in the remaining 32 subjects ranged from

1 to 11 (out of 11 clade B Tier 2/3 viruses), with a median of 4.

Accordingly, this group was further subdivided according to the

median, and subjects with breadth of 1 to 4 were classified

as low-neutralizers (n�18), and subjects with breadth ]5

were classified as high neutralizers (neutralizers; n�14). Similar

stratifications have been applied previously [37�41]. Neutrali-
zation groups were matched for gender, age, ethnicity, time

since HIV diagnosis and prior use of cART (Table 1).

Statistical analyses

Statistical analyses were performed using GraphPad Prism 6

(GraphPad Software, Inc., La Jolla, CA, USA) and JMP† 11.2.0

(SAS Institute Inc., Cary, NC, USA). Gaussian sample distributions

were assessed by Shapiro�Wilk normality test. Contingency

distributions were analyzed by Chi-square test. Two-way com-

parisons were performed using two-tailed t-test or Mann�
Whitney test. Group comparisons were performed by One-way

ANOVA with Holm-Sidak’s multiple comparison correction or

Kruskal�Wallis test with Dunn’s multiple comparisons correc-

tion. Spearman and Pearson rank analyses were performed to

assess correlations. Results were considered significant at

pB0.05 and indicated as follows: *pB0.05, **pB0.01,

***pB0.001. Partial least square discriminant analysis (PLSDA)

[42] with stepwise variable selection was used to determine

multivariate immunological profiles to distinguish neutralization

groups. Partial least square (PLS) regression transforms a set of

correlated explanatory variables into a new set of uncorrelated

‘‘latent’’ (i.e. combined) variables and determines a multi-linear

regression model by projecting the predicted variables and their

corresponding observed values into the resulting new space.

Accordingly, each sample is assigned a score that can be

visualized using score plots. Latent variable loading plots can

then be used to identify immunological profiles that associate

with the different cohorts, as described previously [43]. Prior to

multivariate analysis, all data were mean centred and variance

scaled. These normalization approaches are designed to reduce

bias towards variables with naturally higher raw values or

variance. Within-cohort cross-validation was performed by

iteratively excluding random subsets during model calibration

and then using those data-excluded samples to test model

discrimination and F-ratio rankings.

Results
Study design

We used the study design presented in Figure 1 to investigate

65 HIV controllers. Determination of neutralizing antibody

breadth and immune monitoring for markers of T cell and

myeloid cell activation was performed on all samples. For

the initial analysis, all subjects were stratified into neutrali-

zers (breadth ]5), low-neutralizers (breadth 1�4) and

Table 1. Subject demographics

Subject characteristics Neutralizers Low-neutralizers Non-neutralizers Statistics p-value Total

Subjects (n) 14 18 33 65

Age range min-max (years) 26�64 30�67 31�67 26�67

Average age (years9SD) 47911 52910 5099 One-way ANOVA p�0.43 5099

Male (n, %) 12, 86% 16, 89% 27, 82% Chi-square p�0.37 55, 85%

Race/ethnicity (n, %)

African American 7, 50% 5, 28% 7, 21% 19, 29%

Asian 0, 0% 0, 0% 0, 0% 0, 0%

Caucasians 6, 43% 13, 72% 24, 73% Chi-square p�0.13 43, 66%

Hispanic 0, 0% 0, 0% 2, 6% 2, 3%

Other/unknown 1, 7% 0, 0% 0, 0% 1, 2%

Neutralization breadth (average, range) 7.9, 5�11 2.0, 1�4 0.0,0 B B 2, 0�11

ART naı̈ve (n, %) 7, 50% 12, 67% 18, 55% Chi-square p�0.28 37, 57%

Time since diagnosis (years) 18 19 16 One-way ANOVA p�0.93 17.4

CD4 count (cells/ml) 737 659 796 Kruskal�Wallis p�0.5 761

Protective HLA-B genotype (n, %)

All subjects (n�65) B*27 j B*57 4, 29% 7, 39% 19, 58% Chi-square p�0.11 30, 46%

VC only (n�41) B*27 j B*57 4, 31% 4, 33% 8, 50% Chi-square p�0.5 16, 39%

Median viral load (copies/ml)

All subjects, EC & VC (n�65) 400 87 67 Kruskal�Wallis pB0.010 141

VC only (n�41) 400 304 205 Kruskal�Wallis p�0.5 321

Viral control category (n, %)

Elite 1, 7% 6, 33% 17, 52% Chi-square pB0.050 24, 37%

Viremic 13, 93% 12, 67% 16, 48% 41, 63%

p values in bold indicate significant differences.
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non-neutralizers (breadth 0). While median VL was signifi-

cantly lower in non-neutralizers compared with neutralizers

(n�65, Table 1), overall CD4 counts, ‘‘years diagnosed,’’ and

production of IFN-g by PBMCs in response to clade-B HIV

peptides by Enzyme-Linked ImmunoSpot (ELISPOT) did not

differ between neutralization groups (data not shown).

Higher proportions of subjects generating bNAbs in VC

versus EC are in accordance with previous reports [44], and

the observed differences in VL and HLA-B*27 and B*57 allele

frequencies between neutralizers and non-neutralizers in this

cohort reflected the differential distribution of EC and VC

between neutralization groups (Table 1).

In line with previous studies [45], increased T cell activation

as assessed by frequencies of CD8�CD38�, CD8�CD38�

HLA-DR�, CD4�CD38� and CD4�CD38�HLA-DR� Tcells corre-

lated positively with median VL in this cohort (Supplementary

file 3A, n�65). In contrast, these markers of T cell activation

did not correlatewith neutralization breadth (data not shown).

Neutralization groups within VC (n�41) did not differ in

median VL, CD4 count and ‘‘years diagnosed’’ (Supplementary

file 3B, n�41). In order to avoid VL effects on immune

activation skewing analyses of immune signatures associated

with neutralization breadth, EC were excluded (Figure 1) and

subsequent analyses were performed comparing neutraliza-

tion groups in VC only, using EC as a comparator group where

appropriate.

Multivariate analysis of T cell and myeloid immune markers

identifies immune signatures associated with neutralization

breadth

HIV infection is associated with increased markers of T

cell activation, particularly in viraemic patients [45]. Since

immune responses in vivo are dependent on many different

cellular interactions, we used PLSDA [42] to determine

multivariate immunological profiles that best distinguished

neutralization groups. Model predictions to classify subjects

according to neutralization breadth were performed with

stepwise addition of variables to ascertain the minimum

number of variables needed to achieve high specificity.

Variables were added based on F-ratio, which shows the

model mean square divided by the error mean square and

indicates whether the model differs significantly from a model

where all predicted values are the response mean (Table 2).

Consideration of F-ratios and p-values suggested that

frequency of CD8�CD57� T cells was the most prominent

immune signature associated with neutralization breadth in

these VC (Table 2, Figure 2a), with frequencies of CD14dim

CD16� monocytes and CD8�CD25� T cells ranking second

and third, respectively.

In order to verify that the observed immune signaturewas not

driven by a small subset of subjects in this cohort, we performed

iterative tests in which 10 different subjects were randomly

removed for each of 10 iterations, and ranking of variables by

F-ratio were assessed (Figure 2b). Iterative testing confirmed

that frequency of CD8�CD57� T cells was ranked first for every

iteration of the model (Figure 2b), confirming this variable

identified by PLSDA for the entire cohort. PLSDA performed

incorporating the top three ranking variables (Table 2) resulted in

clear separation of neutralizers (breadth ] 5) from low-

neutralizers (breadth�1�4) and non-neutralizers (breadth�0;

Figure 2c, n�41). Based on these observations, we stratified

patients into two groups by neutralization breadth of B5 or

]5. Accordingly, PLSDA using three variables also showed clear

separation by neutralization breadth B5 versus ]5 (Figure 2d).

Inclusion of variables 1 to 3 with the highest F-ratios and

significant p-values (Table 2) resulted in correct classification of

subjects by neutralization group (B or ]5 breadth) with 87.8%

specificity. It is important to note at this point that due

to unavailability of a second, separate controller cohort,

specificity in this model was calculated from the cohort in which

the model was developed, leading to potential over-fit and an

inflated estimate. Nonetheless, these data demonstrate that

analytical approaches combining three variables allow separa-

tion of subjects with neutralization breadth of B5 and ]5 in

this cohort.

Table 2. PLSDA stepwise variable selection

Variable F-ratio Prob�F

CD8�CD57� 19.3 0.00008

CD14dimCD16� 6.4 0.01576

CD8�CD25� 4.0 0.05246

CD14dimCD16� CX3CR1 MFI 0.9 0.34417

mDC CD80 MFI 0.9 0.33338

CD8�HLA-DR� 0.4 0.52539

CD8�CD38� 0.3 0.56660

mDC CD80� 0.2 0.66598

CD14�CD16� 0.1 0.79906

CD4�CD57� 0.1 0.81195

CD4�CD38� 0.0 0.96123

mDC CD86 MFI 0.0 0.97346

Analysis of individual parameters
T cell activation, myeloid cell subsets & activation

Multivariate analysis

Matching for viral load, CD4 count, duration of infection,
protective allele frequencies and HIV-specific CD8+ T cell responses

Low-neutralizers
Breadth = 1–4; n=18

Neutralizers
Breadth ≥ 5; n=14

Non-neutralizers
Breadth = 0; n= 33

EC; n=24

Assessment of neutralization breadth
Testing against 11 tier 2/3 viruses

VC; n=41

Immune monitoring
T cell activation and monocyte/DC populations

65 Subjects enrolled 

Blood draw to processing and cryopreservation in≤6h

Figure 1. Flow-chart depicting study design.
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Increased frequency of CD8�CD57� T cells in high

neutralizers compared to low- and non-neutralizers

In order to validate variables identified by PLSDA, we

performed univariate analyses of markers of T cell activation

(CD38, HLA-DR, CD25, CD69), senescence/terminal differentia-

tion (CD57) and proliferation (Ki67) on CD4� and CD8� Tcells

in VC (n�41). Frequencies of CD8�CD57� T cells were

significantly higher in neutralizers compared to either low-

neutralizers or non-neutralizers in VC (Figure 3a, b; n�41) and

correlated positively with neutralization breadth (Figure 3c,

r�0.57, pB0.001; n�41). Frequencies of CD8�CD57�

T cells did not correlate with ‘‘years diagnosed’’ (r�0.08,

(a) PLSDA Analysis (b)   Iterative model testing
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Figure 2. Stepwise variable selection by PLSDA allows separation of neutralization groups with combined Tcell and myeloid cell data. (a) F-ratios

for each individual variable are shown (n�41). (b) Iterative model testing shows ranking of immune variables by F-ratio for 10 iterations with 10

different random subsets of the cohort (n�31 per iteration). Model test iterations are shown from left to right (top), and variable ranking based

on F-ratio from 1to 10 are shown from top to bottom. (c) PLSDA was performed including three top variables, and separation of subjects are

shown in Tukey box and whiskers plots with group medians for VC subjects (n�41). (d) PLSDA was performed including three top variables.

Graph shows separation of subjects by combined variable score on the y-axis by neutralization breadth B5 versus ]breadth.
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p�0.6, n�41) and were thus not a measure of duration of

infection. Furthermore, investigations into correlations of

CD8�CD57� T cell frequencies with viral control revealed

that there was no correlation with VL (Supplementary

file 4A; r�0.23, p�0.15; n�41) and that CD8�CD57� T

cell frequency did not differ between EC and VC (Supplemen-

tary file 4B; p�0.33; VC n�41, EC n�24) or between

subjects with or without protective HLA-B genotypes (Supple-

mentary file 4C; p�0.5 for n�65; p�0.8 for n�41).

Frequencies of CD8�CD57� T cells did not correlate with VL

evenwhen EC,who have considerably lower VL comparedwith

VC, were included (n�65, data not shown). Confirmed clade B

infection status (by sequencing or ELISPOT response to Clade B

peptides) was unavailable for two VC subjects. However,

removal of these subjects from the above analyses (n�39)

did not alter any of the observed differences or levels of

significance. In linewith variables identified by PLSDA, no other

T cell activation or proliferation markers investigated in this

study revealed any significant differences between neutraliza-

tion groups in VC (data not shown). However, Spearman rank

analyses revealed a positive correlation between frequency of

CD8�CD57� T cells with total CD8� T cell frequency (r�0.33,

pB0.01, n�41), and negative correlations with total CD4� T

cell (r��0.27, pB0.05, n�41) and CD4�CD25� T cell

frequencies (r��0.27, pB0.05, n�41).

Univariate analyses of myeloid markers revealed increased

frequencies of CD14dimCD16� monocytes in neutralizers

(breadth ]5) compared with low- and non-neutralizers

(breadth B5; Figure 3d). Pearson correlation showed that

CD14dimCD16� monocyte frequencies correlated with fre-

quencies of CD8�CD57� T cells (r�0.34, pB0.05, n�41),

but not with neutralization breadth (r�0.23, p�0.15,

n�41). This suggests that ranking of this variable in PLSDA

was due to its correlation with CD8�CD57� T cell frequency,

explaining its changing position between second and sixth

rank in the model test iterations we performed (Figure 2b).

Frequencies of CD8�CD25� T cells did not differ between

neutralization groups (data not shown). Taken together,

univariate analyses suggest that frequency of CD8�CD57�

T cells in VC is strongly associated with neutralization breadth

]5 independent of VL and duration of infection, and that

CD8�CD57� T cell frequencies are the main immune marker

associated with neutralization breadth in this cohort of VC.

Discussion
In this study, we investigated the relationship of immune

signatures identified through routinely used immune monitor-

ing panels with production of neutralizing antibody breadth

in a cohort of HIV VC. Using multivariate and univariate

analyses, we show that CD8�CD57� T cell frequencies

correlated positively with neutralization breadth. Previous

studies have focused on CD4� T cell characteristics associated

with bNAb in HIV infection. Specifically, development of neu-

tralization breadth was associated with increased frequencies
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Figure 3. Increased frequencies of CD8�CD57� T cells in neutralizers. (a) Representative dot plots showing frequencies of CD8�CD57�

T cells in non-neutralizers, low-neutralizers and neutralizers. (b) Frequency of CD8�CD57� T cells in VC (n�41) with group median is shown

for breadth B5 (non-neutralizers in white circles, low-neutralizers in grey circles, n�28) versus breadth ]5 (neutralizers, black circles,

n�13). (c) Pearson correlation of neutralization breadth with frequency of CD8�CD57� T cells (VC only, n�41). (d) Frequency of

CD14dimCD16� monocytes in VC (n�41) with group median is shown for breadth B5 (non-neutralizers in white circles, low-neutralizers in

grey circles, n�28) versus breadth ]5 (neutralizers, black circles, n�13).
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of PD-1�CD4� T cells in early infection [16], and with higher

frequencies of class-switched antibodies in co-cultures of

CXCR5�CD4� T and B cells [39]. Others found no correlation

between frequencies of peripheral TFH cells with neutralization

activity in untreated HIV-positive individuals [38]. Using a

more generalized immune monitoring approach, our analyses

identified a strong signature of increased CD8�CD57� T cell

frequencies with neutralization breadth in this cohort of HIV

controllers.

CD57 is considered a marker of terminal differentiation,

and expansion of CD8�CD57� T cells was associated with

decreased VLs in a study of non-controllers [46]. In light

of these findings, it is interesting to note that there was

no difference in CD8�CD57� T cell frequencies between VC

and EC, nor any correlation of this marker with VL in our

cohort. The aforementioned study [46] used a smaller cohort

than the current one and investigated T cell frequencies

in the context of higher VLs (compare VL range of 2000 to

3,219,000 copies/ml, n�9 in [46] vs. 50 to 2355 copies/ml,

n�41 in this study). Nonetheless, frequencies of CD8�

CD57� T cells did not differ between chronic-treated (median

VL 20 copies/ml, range undetectable-581 copies/ml) and

chronic-untreated subjects (median VL 4865 copies/ml, range

649 to 1.58�107 copies/ml; unpublished observations),

suggesting that our observation that frequencies of CD8�

CD57� T cells do not correlate with VL also hold true in

individuals with high VLs in the absence of treatment.

Furthermore, our findings are in agreement with a recent

study showing that frequencies of CD8�CD57� T cells did

not correlate with VL in treated and untreated patients [47].

It is nonetheless remarkable that despite the correlation of

VL with neutralization breadth here (with inclusion of EC) and

in other studies [8], the association of increased CD8�CD57�

T cell frequencies with neutralization breadth is independent

of VL. While elevated percentages of CD8�CD57� T cells

have been described as a symptom of chronic immune

activation [48] and of accelerated immune senescence in

chronic HIV infection [49], several studies have also shown

that CD8�CD57� T cells elicit potent cytotoxic effector

functions in HIV and other viral infections [50,51] through

high expression of perforin and secretion of IFN-g and TNF-a
[52]. A recent study comparing HIV-specific T cell responses in

neutralizers and non-neutralizers showed a greater breadth

and magnitude of CD4� T cell responses to HIV Gag by

ELISPOT in neutralizers versus non-neutralizers [37], suggest-

ing a more effective CD4 T cell response. In addition, our

data showing that CD8�CD57� T cell frequencies correlated

positively with total CD8� T cell frequency and negatively

with CD4�CD25� T cell frequencies may indicate that

elevated frequencies of CD8�CD57� T cells in VC with high

neutralization breadth reflect reduced T regulatory and

increased cytotoxic T cell frequencies in these subjects.

Generation of bNAbs in treated subjects has been linked to

longer periods of detectable viraemia [53], and even though

overall viraemia did not correlate with CD8�CD57� T cell

frequencies or neutralization breadth in VC, it is also possible

that higher frequencies of CD8�CD57� T cells are indicative

of an immune response to increased viral diversity driving the

production of bNAbs without correlating with overall VL.

Previous studies have aimed at identifying immune

signatures in early HIV infection that might predict subse-

quent production of bNAbs [16,39]. In contrast, this study

was designed to determine immune activation signatures

concurrent with neutralization breadth. Data presented by

Mikell et al. comparing HIV-positive subjects early in infection

showed no increase in CD8�CD57� T cell frequencies in

subjects that later developed bNAbs [16]. The authors argued

that small sample size precluded detection of any immune

signals at a statistically significant level. Using a larger

cohort of chronically infected individuals with spontaneous

virologic control but detectable viraemia, our study shows

clear differences in CD8�CD57� T cell frequencies in high

neutralizers compared with low- and non-neutralizers,

adding to this prior work. It is important to note that good

sample integrity was critical for this finding, as others have

shown that delay between blood collection and sample

processing alters cellular responses and surface expression

levels [31,32]. This was confirmed in the present cohort,

as differences in CD8�CD57� T cell frequencies were not

apparent in samples where blood was left at room tem-

perature for 18 to 24 hours prior to processing and

cryopreservation. Flow cytometry has evolved from a

relatively inaccessible investigative tool to a widely-used

and accessible method of interrogating cellular phenotypes

in laboratories across the globe [54], making it ideal as a

screening tool for use in HIV vaccine trials. In addition, while

studies aiming at cross-cohort comparisons are susceptible

to differences in site-specific protocols and machine set-up

[55,56], screening for relative differences in CD8�CD57�

T cell frequencies in a specific cohort would not require such

coordinated efforts. It is important to note that our study

was limited by the fact that we did not have an independent

validation cohort to test our model predictions on, and

that our within-cohort iterative testing is likely to be over fit

and give an inflated estimate of the predictive value of

this immune signature. It is, therefore, vital for this immune

signature to be investigated and corroborated in additional

cohorts comparing HIV-positive subjects stratified by neu-

tralization breadth. If validated, the immune signature

identified in this study could allow quick identification of

subjects with neutralization breadth-associated immune

signatures prior to being sent for standardized analyses for

neutralization breadth and potency as previously proposed

[29]. Thus far, HIV vaccine trials have not elicited sufficiently

protective antibody responses, and in particular, the produc-

tion of bNAbs has not been achieved by the more conven-

tional vaccination approaches tested [3�5]. In the context of

such studies, it is unlikely that the immune responses elicited

by a conventional vaccine approach are comparable with

those driving bNAb production in individuals that are able to

control viraemia. However, in the light of two very recent

exciting studies using single and sequential immunization

strategies with germline-targeting immunogens to induce

maturation and recombination of the VRC01 germline in

mice [57,58], it is feasible that a vaccination strategy

developed to mimic the natural processes leading to the

evolution of bNAbs would also induce corresponding im-

mune signatures to those observed in situ. In the context of
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the latter scenario, an immune signature associated with

neutralization breadth could also be applied to pre-screen

samples in vaccine trials, opening the door for cheaper and

more efficient analysis of such samples prior to in-depth

analysis of antibody profiles.
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